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ABSTRACT

This paper develops a method for homogenizing daily temperature series. While daily temperatures are

statistically more complex than annual or monthly temperatures, techniques and computational methods

have been accumulating that can now model and analyze all salient statistical characteristics of daily tem-

perature series. The goal here is to combine these techniques in an efficient manner for multiple changepoint

identification in daily series; computational speed is critical as a century of daily data has over 36 500 data

points. Themethod developed here takes into account 1) metadata, 2) reference series, 3) seasonal cycles, and

4) autocorrelation. Autocorrelation is especially important: ignoring it can degrade changepoint techniques,

and sample autocorrelations of day-to-day temperature anomalies are often as large as 0.7. While daily ho-

mogenization is not conducted as commonly as monthly or annual homogenization, daily analyses provide

greater detection precision as they are roughly 30 times as long as monthly records. For example, it is rela-

tively easy to detect two changepoints less than two years apart with daily data, but virtually impossible to flag

these in corresponding annually averaged data. The developed methods are shown to work in simulation

studies and applied in the analysis of 46 years of daily temperatures from South Haven, Michigan.

1. Introduction

Climate time series often exhibit artificial discontinu-

ities induced by station relocations, gauge changes, ob-

server changes, and so on. Such changes may impart

statistical discontinuities in associated data and are called

changepoints (or breakpoints, or mean shifts). Mitchell

(1953) estimates that U.S. temperature series experience

about six breakpoints per century on average. Some, but

not necessarily all, of these times induce mean shifts

in the series. While the times of some gauge changes,

station relocations, and other events are documented in

station history logs (called metadata), these records are

notoriously incomplete, and many breakpoint times are

undocumented.

This paper seeks to identify all changepoint times

in a daily temperature record while accounting for

four critical aspects: metadata, a reference series, a

seasonal cycle, and autocorrelation. While Li and

Lund (2015) and Li et al. (2016) consider these fea-

tures in annual and monthly series, this paper modifies

the methods to accommodate the more complex fea-

tures seen in daily data. Analyses of a single daily

series by some existing methods may take days of

computation time as a century of daily data has over

36 500 entries. Our methods are illustrated on single

series only; homogenization of a temperature series

network or comparison to other homogenizationCorresponding author e-mail: Robert Lund, lund@clemson.edu
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methods is a worthy endeavor, but beyond our in-

tended scope.

Undocumented changepoint identification is crucial in

climate analysis (Potter 1981; Vincent 1998; Caussinus

andMestre 2004;Menne andWilliams 2005, 2009; Lu and

Lund 2007). The changepoint locations and mean shift

sizes need to be estimated to make accurate inferences

from the data; in fact, Lund et al. (2001) show that

changepoint information is the single most important

data feature to account for when reliably estimating a

temperature trend at a fixed U.S. station. Once the

changepoint times are identified, most other statistical

inference procedures are relatively straightforward.

A common method used to identify multiple change-

points is any binary segmentation procedure and an at

most one changepoint (AMOC) test. Workhorse AMOC

procedures include the standard normal homogeneity

(SNH) test, the nonparametric SNH test, and the two-

phase regression of Lund and Reeves (2002) and Wang

et al. (2014). These and other methods are reviewed in

Reeves et al. (2007) and typically assume that the un-

derlying regressionmodel for the series is known and that

the error terms in the regression model are independent

and identically distributed. Such assumptions, especially

independence, are violated with monthly or daily tem-

peratures, which are highly correlated.

Binary segmentation techniques can turn any AMOC

method into a multiple changepoint estimation scheme.

In segmentation schemes, the time series is first classi-

fied as changepoint free or having a single changepoint.

If one changepoint is declared, then the series is split

into two segments about the changepoint time. AMOC

methods are then applied to the two shorter segments to

test for further changepoints. This procedure is repeated

until all subsegments are declared changepoint free.

Segmentation techniques have difficulty detecting two

or more changepoints located closely in time (Li and

Lund 2012). Moreover, when multiple changepoints

shift the series mean higher at some changepoints and

lower at others, an AMOC techniquemay fail to declare

any changepoints whatsoever. For these reasons, mul-

tiple changepoint techniques are needed.

Efficient multiple changepoint algorithms that iden-

tify the number of changepoints and their locations are

presented in Caussinus and Mestre (2004) and Davis

et al. (2006). Caussinus and Mestre (2004) use a penal-

ized log-likelihood criterion to estimate the number of

changepoints, their locations, and any outliers. Davis

et al. (2006) propose an automatic procedure to segment

nonstationary time series into blocks of different au-

toregressive (AR) processes. The number of change-

points, their locations, and the orders of the AR models

are estimated by optimizing a minimum description

length (MDL) objective function via a genetic algo-

rithm. Menne and Williams (2005) introduce semi-

hierarchical splitting algorithms tomultiple changepoint

problems. There, a series is subdivided and several hy-

pothesis tests are conducted to compare candidate

changepoint configurations.

Li and Lund (2012) develop a multiple changepoint

technique for annual climatic databased on an MDL

penalized likelihood. There, the penalized likelihood is

optimized by a genetic algorithm; however, their tech-

niques apply to annual (nonperiodic) series and ignore

trend features. Toreti et al. (2012) present a general

segmentation method based on hidden Markov chains.

They analyze annual winter precipitation, which does not

exhibit high autocorrelation. Li and Lund (2015) develop

Bayesian statistical methods to incorporate metadata in

multiple changepoint detection and apply them to annual

precipitation data. Prior distributions for the number of

changepoints and their locations are constructed to re-

flect climatologists’ belief that the metadata times are

more likely to be changepoints. The prior distributions

and the likelihood of the observed data are combined to

form a posterior distribution of the changepoint config-

uration. The number of changepoints and their locations

are estimated as those that maximize the posterior

probability. We will borrow some of these techniques to

handle metadata and correlation aspects in daily series.

The above literature studies monthly and annual se-

ries. Changepoint literature for daily data is scarcer.

Homogenized daily data are useful in trend, extreme,

and variability studies. Since a daily series contains

many more observations than monthly or annual series,

daily analyses will have a greater precision. On the other

hand, analysis of daily data is more challenging due to

the longer series lengths and the number of time series

model parameters needed. In fact, a simple model for

daily temperatures contains more than 1095 (365 3 3)

parameters (see the next section).

Vincent and Zhang (2002) present a method to ho-

mogenize daily maximum and minimum temperatures

over Canada. Their method homogenizes daily data based

on the changepoints found and the subsequent ad-

justments made in corresponding monthly data. Daily

temperature adjustments are conducted by linear in-

terpolation, which preserves the long-term trend and var-

iations in the monthly series. Della-Marta and Wanner

(2006) propose a method to homogenize daily data that is

capable of adjusting the series’ mean and higher-order

moments. Their method uses a nonlinear model to esti-

mate the relationship between a target and reference se-

ries. Kuglitsch et al. (2009) present a quality control and

homogenization method based on a penalized log-

likelihood for a nonlinear model. The break detection
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and correction methods there require a highly correlated

reference series. Thebreakpoints are identified by applying

themethods inCaussinus andMestre (2004) to an annually

differenced series.More recently, Trewin (2013) develops a

percentile-matching algorithm to homogenize daily tem-

perature data in Australia, which permits different adjust-

ments based on where a temperature lies in its frequency

distribution.Wang et al. (2014) andXuet al. (2013) also use

changepoints identified in the monthly averages to ho-

mogenize corresponding daily maximum and minimum

temperatures. All of the above-mentioned daily homoge-

nization methods are based on the changepoints identified

in corresponding annual or monthly series. Often, corre-

lation aspects are eschewed in these methods.

For daily precipitation, Wang et al. (2010) develop an

AMOC method based on a two-phase regression model

and a data-adaptive Box-Cox transformation for nonzero

daily precipitation amounts, noting that it is wrong to

change a dry day to a nondry day. Gallagher et al. (2012)

also develop an AMOC technique for daily precipitation

data via Markov chain and prediction methods. Their

methods employ a background Markov chain to describe

adjacent rainy anddry runs of days.While thismodel allows

for correlation in the day-to-day precipitation amounts, the

analyses becomes more mathematically complicated.

In this paper, a Bayesian MDL (BMDL) method is

devised to estimate multiple changepoints in daily

temperature data. Our method estimates the number of

changepoints and their locations in data with autocor-

relation, seasonality, and/or a linear trend. A genetic

algorithm is devised to optimize the BMDL objective

function, which is developed from a time series model

for daily temperatures that allows for seasonality and

autocorrelation. The model incorporates prior beliefs

based on metadata records.

The rest of the paper is organized as follows. The next

section introduces a model for daily temperature data.

Section 3 develops the BMDL objective function for the

problem. Section 4 deals with genetic algorithm aspects.

Section 5 presents simulation studies showing that the

methods can effectively and efficiently detect changepoints

and accurately estimate their mean shift sizes. Section 6

presents a changepoint analysis of daily temperatures re-

corded at SouthHaven,Michigan. Section 7 concludeswith

comments.

2. A multiple changepoint model for daily data

Our object of interest is a daily temperature series.

Such series display autocorrelation, seasonal means and

variances, a linear trend, and possible mean shifts at

breakpoint times. A model that captures the above

features will now be devised. We consider data

X5 (X1,X2, . . . ,XN)
0 recorded daily. Here, N5 dT,

where T5 365 is the period of the series and d is the

number of years of data. We assume data for d complete

years to avoid trite work. The season (day of year) is

indexed by n 2 f1, 2, . . . , Tg. The notationXnT1n refers

to the observation during the nth day of the nth year, for

years n 2 f0, 1, . . . , d2 1g. With daily data, leap year

observations are omitted to enforce a period of T5 365.

Our fundamental model is a linear regression with

seasonality, a linear trend, multiple possible mean shifts,

and periodic random errors:

X
nT1n

5m
n
1a(nT1 n)1 d

nT1n
1 «

nT1n
. (1)

Here, mn is the mean temperature on day n (neglecting

trend and mean shifts). We assume that the linear trend

parameter,a, is time-homogeneous; other trend structures

can be accommodated, but this is seldom necessary when

examining target minus reference series as the subtraction

greatly reduces any trends. The ordered changepoint times

are denoted by 1, t1 , t2 ,⋯,tm #N, where m is

the unknown number of changepoints. Time 1 is not

allowed to be a changepoint. The changepoint struc-

ture can be described by a binary indicator vector

h5 (h2,h3, . . . ,hN)
0, with

h
t
5

�
1, if time t is a changepoint ,

0, otherwise.

Thismodel has 2N21 distinct changepoint configurations.

The m changepoints in h partition the series into m1 1

distinct regimes. We take t0 5 1 and tm11 5N1 1 for

edge notations. The jth regime consists of the observa-

tions for times t with t 2 ftj21, . . . , tj 2 1g for

j5 1, 2, . . . , m1 1.

In regime j$ 2, Dj denotes the magnitude that the

mean has shifted relative to that in the first regime

(neglecting the seasonal cycle and trend). For parameter

identifiability, D1 5 0 is imposed. Define a vector

D5 (D2,D3, . . . ,Dm11)
0 whose entries are the mean shift

sizes that need to be estimated. The component fdnT1ng
in (1) has the shift structure

d
t
5

8>>>><
>>>>:

D
1
5 0, t

0
# t, t

1
,

D
2
, t

1
# t, t

2
,

..

.

D
m11

, t
m
# t, t

m11
.

The shift from regime j to regime j1 1 changes mean

temperatures (trend and seasonal cycle excluded) by

Dj11 2Dj degrees.

The model errors f«nT1ng have zero mean and are

autocorrelated. Daily temperatures are in fact heavily
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correlated, with consecutive days often having correla-

tion on the order of 0.7. As winter temperatures are

about 2 to 5 times more variable than summer temper-

atures in the United States (as measured by standard

deviation), a first-order periodic autoregressive time

series [PAR(1)] (Lund et al. 1995) will be used to model

the regression errors. A PAR(1) time series indeed has

autocorrelation and periodic variances. A series f«tg is

said to be a PAR(1) series with zero mean if it satisfies

the seasonal difference equation

«
nT1n

5f(n)«
nT1n21

1Z
nT1n

. (2)

Here, f(n) is the autoregressive parameter during day n,

and fZnT1ng is zero mean periodic white noise with

variance Var(ZnT1n)5s2(n).

Ourmodel has 3T1 2m1 2 unknown parameters: the

changepoint parameters m, t1, t2, . . . , tm, the seasonal

meansm1, m2, . . . , mT , the linear trend a, themean shifts

D2, D3, . . . , Dm11, and the time series PAR(1) parame-

ters f(1), f(2), . . . , f(T) and s2(1), s2(2), . . . , s2(T).

In the next section, a BMDL objective function is in-

troduced, which is subsequently minimized to estimate

an optimal multiple changepoint configuration.

3. Bayesian minimum description lengths

This section develops an objective function that can

be minimized to estimate the optimal changepoint

configuration h. The derivation is lengthy and similar to

that in Li et al. (2016) for monthly data; hence, only an

outline of the derivation steps and the end objective

functions are listed here. This said, the derivation differs

somewhat from Li et al.’s since f«tg has periodic

features here.

The MDL principle is used as our model selection cri-

teria. AnMDL objective function is a penalized likelihood

with a smart penalty tailored to the changepoint problem.

TheMDLpenalty, originally developed inRissanen (1989)

from information theory, has an analogous role to the

Akaike information criterion (AIC) and Bayesian in-

formation criterion (BIC) penalties, but is more compli-

cated than a simple multiple of the number of unknown

parameters that characterize AIC and BIC penalties. In

fact, the MDL penalty also depends on how far the

changepoints lie from each other. Among a class of plau-

sible models, the MDL principle seeks the model with the

smallest (shortest) so-called description length. Better

models should have shorter description lengths. For more

background, see Hansen and Yu (2001) and Grünwald
et al. (2005). The MDL principle has been utilized in cli-

mate changepoint detection problems (Davis et al. 2006; Lu

et al. 2010; Li and Lund 2012), with good results. Recently,

Li et al. (2016) developed a newBMDL technique that uses

metadata. Here, this method is tailored to accommodate

daily data.

For a given candidate changepoint configuration h, its

BMDL has form

BMDL(h)5L(X jh)1L(h) , (3)

where L(X jh) is related to the data likelihood, and

L(h) acts as a penalty for the changepoint number and

locations. An outline of the steps to compute the BMDL

is listed below:

1) Compute the PAR(1) likelihood function given the

other model parameters,

f (X jD,m,a,f,s2,h),

where m, f, and s2 are vectors containing all

seasonal means, PAR(1) coefficients, and PAR(1)

white noise variances, respectively.

2) Compute a marginal likelihood by integrating the

regime mean shift sizes D out under a Gaussian prior

distribution, that is,

f(X jm,a,f,s2,h)5

ð
f (X jD,m,a,f,s2,h)p(D) dD,

where the prior distribution p(D) is assumed to be

composed of m independent normal distributions

with zero mean and the same variance, that is,

D;N(0, kg2Im), where g2 5 [P
T
n51s

2(n)]
1/T

is the

geometric mean of s2(1), s2(2), . . . , s2(T). The

parameter k can be roughly viewed as the ratio of

the variance of regime means relative to the variance

of time series noises over a year. One does not need a

precise value for k. Here, k is usually prespecified as

some large value so that very little mean shift in-

formation is contained in the prior; we force mean

shift sizes to be learned from the data. Our default

takes k5 5.

3) Maximize the marginal likelihood function over the

model parameters m, a, f, s2, and obtain the de-

scription length of the observed dataL(X jh), that is,

f (X jh)5 f (X j m̂, â, f̂, ŝ2,h),

L(X jh)52log[ f (X jh)] ,

where m̂, â are the ordinary least squares estimators,

and f̂, ŝ2 are the Yule–Walker moment estimators

for the PAR(1)model, computed from standard time

series methods (Lund et al. 1995).

4) Compute the MDL of the description length of the

changepoint configuration h via L(h)52log[p(h)],
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where p(h) is the prior discrete probability mass

function of h. Metadata is incorporated in this prior

distribution. Elaborating, a beta-binomial prior is put

on h. This prior assumes that 1) each undocumented

time is a changepoint with probability r1, 2) each

documented time is a changepoint with probability r2,

and 3) documented times are more likely than un-

documented times to be changepoints: r2 . r1. In the

absence of information beyond the metadata record,

changepoints declarations at all distinct time points

are assumed to be statistically independent. Since we

do not know r1 and r2, we model these in a Bayesian

hierarchical fashion. Elaborating, r1 is modeled as a

Beta(1, b1) random variable; r2 is modeled as a

Beta(1, b2) variable. Our default values take

b1 5 365/:06 and b2 5 4, which reflects our prior

belief that E[r1]5 1/(11 365/:06)’ :06/365 (ap-

proximately six changepoints per century) and

E[r2]5 1/(11 4)5 0:2 (one out of every five met-

adata times induces a true mean shift). The param-

eters b1 and b2 can be changed by users should

changepoints be believed to occur at different rates.

Detection results are relatively stable under a wide

range of parameter choices (Li and Lund 2015).

For a given candidate changepoint configuration h

with at least one changepoint, the BMDL objective

function is

BMDL(h)5
m

2
log(kg2)1

1

2
�
N

t51

log[s2(t)]1
1

2
log(jBj)1 1

2
�
N

t51

Y2
t

s2(t)
2

1

2
b0B21b

2 log[G(11m
1
)G(b

1
1n

1
2m

1
)G(11m

2
)G(b

2
1 n

2
2m

2
)] . (4)

In the above, G(x) is the gamma function at the argument

x, all logarithms are natural-based, and jBj is the de-

terminant of the matrix B, whose formula is given below.

The optimal changepoint configuration is the h that

minimizes BMDL(h). For each candidate changepoint

configuration h, the mean shift, trend, and time series

parameters are optimally estimated (see the simulation

example in section 5 for a detailed illustration). Our next

objective is to explain the quantities arising in (4). For

this, the prediction residuals fYtgNt51 are computed from

Y
t
5 (X

t
2m

t
2at)2f(t)[X

t21
2m

t21
2a(t2 1)] ,

with the convention that Y1 5X1 2m1 2a. During the

jth regime, we define

a
j
5 �

tj21

t5tj21

1

s2(t)
1 �

tj21

t5tj21

f2(t1 1)

s2(t1 1)
2 2 �

tj21

t5tj2111

f(t)

s2(t)
,

b
j
5 �

tj21

t5tj21

Y
t

s2(t)
2 �

tj21

t5tj21

Y
t11

f(t1 1)

s2(t1 1)
,

and cj 5f(tj21)/s
2(tj21). Also, b5 (b2, . . . ,bm11)

0, and
B is an m3m symmetric matrix with form

B5

0
BBBBBBBBBBBBBBBBBBBBBB@

a
2
1

1

kg2
2c

3
0 0 0 ⋯ 0

2c
3

a
3
1

1

kg2
2c

4
0 0 ⋯ 0

0 2c
4

a
4
1

1

kg2
2c

5
0 ⋯ 0

..

. ..
. ..

.
⋱ ..

. ..
. ..

.

0 0 0 ⋯ 2c
m

a
m
1

1

kg2
2c

m11

0 0 0 0 ⋯ 2c
m11

a
m11

1
1

kg2

1
CCCCCCCCCCCCCCCCCCCCCCCA

.

Finally,m1 andm2 are the number of undocumented and

documented changepoints in h, respectively. The total

number of changepoints in h is m5m1 1m2; moreover,

n2 is the number of metadata points and n1 5N2 12 n2.
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The BMDL for the changepoint configuration with no

changepoints, denoted by h0, is

BMDL(h
0
)5

1

2
�
N

t51

log[s2(t)]1
1

2
�
N

t51

Y2
t

s2(t)

2 log[G(b
1
1 n

1
)G(b

2
1n

2
)] . (5)

This allows one to comparemodels with changepoints to

the model with no changepoints and fixes an issue with

the methods in Davis et al. (2006) and Li and Lund

(2012), where the term log(m) arises (this is undefined

for m5 0, the no-changepoint configuration).

4. BMDL minimization

The best changepoint configuration is the one (or

more) that minimizes the BMDL score. A naive ap-

proach to find such a configuration is to perform an ex-

haustive search. Such an approach requires 2N21 distinct

BMDL evaluations. Thus, for a century of daily data,

236500 BMDL evaluations need to be conducted, an in-

feasible task for even the world’s fastest computers.

Hence, an efficient optimization algorithm is needed to

find the best model. For this, a genetic algorithm (GA),

which is an intelligent stochastic search that quickly

visits only good changepoint configurations, is devised to

perform the minimization.

GAs are popular optimization tools (Goldberg and

Holland 1988) that are inspired by natural selection and

genetics. Like Darwin’s theory of evolution, GAs have

aspects of genetic evolution that allow the fittest models

to survive in a random walk stochastic search. GAs

usually converge to global optimums. Beasley et al.

(1993) and the references therein compare GAs to other

optimization methods.

GAs encode each model as a chromosome. Here, a

chromosome is represented by a binary indicator vector

h5 (h2,h3, . . . ,hN)
0 as in section 2. The number of

changepoints in h is m5�N

t51ht and the changepoint

locations t1, t2, . . . , tm are the nonzero positions in h.

The GA begins with a randomly generated initial pop-

ulation of chromosomes and evaluates the BMDL score

at each generated chromosome. The GA then simulates

successive generations of chromosomes via a series of

operations: parent selection, breeding (crossover), and

mutation. Chromosomes with smaller BMDLs are

viewed as fitter and are more likely to be selected to

bear children. In each generation, two chromosomes

(parent chromosomes) are selected to breed. These par-

ent chromosomes are combined cross-overed to form a

new chromosome called a child. The child’s chromosome

is allowed to mutate before joining the next generation.

This process is repeated until a certain number of chil-

dren are produced for the generation. The resulting

population is referred to as the next generation. A pre-

specified number of generations are often simulated. If

implemented correctly, the overall fitness of the gener-

ation, which is the BMDL score of the fittest individual

in the generation, converges to the global minimum

(Cerf 1998). Details on how to implement our GA are

now given.

a. Initial generation

An initial population often simply simulates a set of

chromosomes at random. Here, each position in a

chromosome is allowed to be a changepoint with some

preset probability. For daily data, this probability is set

to 6/36500 [following Mitchell (1953), this corresponds

to an average of six changepoints per century]. While

small generation sizes might not explore enough dif-

ferent chromosomes, larger generation sizes slow the

algorithm down. A generation size of 150 will be taken

here for illustration purposes. One need not consider

metadata aspects in the initial generation; this is ac-

counted for in the BMDL score.

b. Parent selection

Once the initial generation is simulated, parents

(mother and father chromosomes) are selected to breed.

To generate fitter offspring, a parent selection technique

is needed. This technique should be more likely to

choose fitter individuals to bear children. Several se-

lection mechanisms are listed in Beasley et al. (1993).

Here, a linear ranking is used to select the parents from

the 150 chromosomes. First, the 150 chromosomes’

BMDL scores are ranked in a descending order; the

chromosome with the highest BMDL (the least fit) has

rank 1 and the chromosome with the smallest BMDL

(the most fit) has rank 150. Parents are chosen with

probabilities proportional to their ranks: if the rank of

the ith chromosome is Ri, it is selected as a father with

probability Ri/�150

j51Rj 5Ri/11, 325. The most fit chro-

mosome has a 0.01324 chance of being selected as a fa-

ther for any child; the least fit chromosome has a

0.00008809 chance of fatherhood. Mothers are then se-

lected in the same way from all nonfather chromosomes.

c. Crossover

Crossover mechanisms combine mother and father

chromosomes in a random manner to generate a child

chromosome. The child chromosome ideally contains

changepoint characteristics of both parents. Our cross-

over mechanism allows changepoints in either parent to

be changepoints of the child. The general idea is best

illustrated with an example: suppose, with N5 6, that
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the mother chromosome is h1 5 (0, 1, 0, 1, 0, 0)0 and the

father chromosome is h2 5 (0, 0, 0, 1, 0, 1)0 (the time slot

1 restriction h1 5 0 is appended in the h vectors for

clarity). Here, the mother has changepoints at times 2

and 4 and the father has changepoints at times 4 and 6.

The child chromosome is first set to have changepoints

of either mother or father: (0, 1, 0, 1, 0, 1)0. At this point

the child likely has more changepoints than the mother

or father; hence, some child chromosomes are randomly

discarded. With the aforementioned child chromosome,

a fair coin is flipped three times, one at each of the three

changepoint times, and all changepoints with tails are

discarded. If the resulting coin-flip sequence is heads,

tails, heads, then the second changepoint at time 4 is

discarded and the resulting chromosome becomes

(0, 1, 0, 0, 0, 1)0.
Since the number of distinct changepoint configura-

tions is enormous, changepoint locations are perturbed

to speed algorithm convergence. Next, the location of

each changepoint is shifted via an integer-valued ran-

dom variable with zero mean. To execute this, two in-

dependent Poisson random numbers D1 and D2 are

generated at each changepoint time and the change-

point’s location is then shifted by D1 2D2 time units.

For example, a chromosome containing three change-

points might see Poisson differences of 21, 0, and 3,

respectively. Then the first changepoint is shifted

downward one day, the second changepoint time is not

shifted, and the third changepoint time is shifted upward

three days. Should any of the shifted times be less than

day 2 or more than day N, the changepoint is altogether

eliminated. Choosing the best Poisson parameter l can

be tricky, but it is important for computational speed. In

early generations, a larger l is needed to explore new

changepoint locations; in later generations, a smaller

value of l is preferred to slightly tune the likely good

changepoint configurations in the current models being

explored. Selection of l is described further below.

d. Mutation

Each child is allowed to mutate after crossover. Mu-

tation changes randomly selected bits of each chromo-

some. If mutation is not allowed, theGA can hone in to a

local minimum; with mutation, radically different chro-

mosomes are continually explored. Mutation essentially

ensures the exploration of whole changepoint configu-

ration space, maintaining a diversity of the chromosome

population and preventing premature GA convergence.

Our mutation mechanism selects a random number of

locations in a child and flips the changepoint at each of

these selected locations. For example, if position 100 is

chosen for mutation and is not a changepoint in the

child, it is flipped to a changepoint; should time 100

already be a changepoint, it is flipped to a non-

changepoint. In our algorithm, each time is allowed to

mutate independently with a very small probability

(described below). In many chromosomes, no

mutation occurs.

e. Islands and migration

There can be a huge number of distinct changepoint

configurations in a daily series. In such settings, re-

searchers often suggest island versions of the GA ap-

proach. In an island GA, populations are divided into

several subpopulations, called islands. GAs are run si-

multaneously on each island. The islands are largely

isolated, but migrations are allowed to occur between

islands every now and again. This allows very fit chro-

mosomes to change islands. Migration increases chro-

mosome diversity and prevents the algorithm from

converging to a local BMDL minimum. A migration

policy specifies the number of islands, the migration rate

(number of individuals to migrate), and the migration

interval (the frequency of migrations). Our migration

policy replaces the least-fit individual on each island by

the best-fit individual of a randomly selected different

island, once every five generations.

f. Stopping rule and parameter choices

The GA is terminated when a prescribed stopping

criterion is reached. Frequently used stopping criteria

are that a prespecified maximum number of genera-

tions are reached, or that there is no improvement

in the most-fit member in many successive genera-

tions. The most-fit chromosome of the last generation

(among all islands) is taken as the estimated change-

point configuration.

GA convergence depends on parameters such as the

number of islands, the population size of each island, the

mutation probability, and the Poisson parameter l. Our

experience suggests that the GA will converge under a

range of parameter choices, which suggests that one

does not have to tune these parameters optimally to get

good results; however, an efficient algorithm is usually

appreciated. In our subsequent work, the following pa-

rameter settings are used: 1) with 46 years of daily data,

two islands of size 75 were used, the mutation proba-

bility was set to 0.0001, and l5 50. For 10 years of daily

data, three islands of size 50 were used, the mutation

probability was set to 0.0001, and l5 1. In the next

section, we also explore how long a GA takes to find the

best changepoint configuration with various parameter

settings. Users can experiment with other parameter

settings that may work faster for their particular series,

but GA algorithm convergence is usually not a param-

eter selection issue.
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5. Simulation studies

Using simulation examples, this section first assesses

the performance of our daily homogenization methods,

illuminates its advantages over monthly homogeniza-

tion techniques, and explores different GA parameter

choices and their runtimes. One thousand series, each

containing 10 years of daily data (N5 3650) were sim-

ulated under various scenarios. For application realism,

the daily means and linear trend were set to those esti-

mated in the South Haven, Michigan, daily temperature

series after adjusting for a reference series. The South

Haven series is studied in detail in the next section. The

parameters of the PAR(1) model were set to those es-

timated in the South Haven minus reference series of

the next section. Figure 1 graphically displays these

parameters. In each simulated series, a metadata record

was posited to contain five points at the times

450, 900, 1500, 3100, and 3350.

a. No changepoints

As a control run, 1000 Gaussian series were simulated

under the above specifications without changepoints

and our methods were applied. A GA with two islands

was used to optimize the BMDL; the other GA settings

are as specified in the last section. Two hundred gener-

ations were simulated in the analysis of each series. The

results estimated 962 series with no changepoints, 33

series with one changepoint, and five series with two

changepoints. The false-positive rate (3.8%) is reason-

ably low. The average runtime of the GA for each series

in this section was about nine minutes on a Dell OptiPlex

9020 computer. MATLAB R2015 software was used

to run the genetic algorithm and the code is available

from the authors upon request.

b. Three changepoints: One documented and two
undocumented

Next, 1000 Gaussian series were simulated with three

mean shift changepoints at the times t1 5 900 (19 June,

year 3), t2 5 1800 (6 December, year 5), and t3 5 2700

(25 May, year 8). Here, the first changepoint is also a

metadata time. The series mean shifts upward by 28F at

each changepoint time. The average variance (over all

days of year) of any simulated series is roughly 7.88F.
Hence, the signal to noise ratio is 2/

ffiffiffiffiffiffiffi
7:8

p
5 0:716.

The top panel of Fig. 2 shows a simulated series. The

metadata times are marked with crosses on the x axis.

Detection percentages for this case (at the exact

changepoint time) are displayed in the bottom panel of

Fig. 2. Since t1 is a metadata point, t1 should be easier to

flag as a changepoint, all other things being equal. As

expected, t1 has the highest detection rate. Although the

mean shift sizes at times t2 and t3 are identical, the de-

tection rate of t2 is higher. This is because t2 occurs on

6 December, which is a season of less variability than t3,

which occurs on 25 May. From the bottom panel of

Fig. 1, s(n) at t2 (6 December) and t3 (25May) are 1.898
and 3.348F, respectively. Higher variability makes

changepoint detection harder (this seasonality issue is

explored further below). Among the 1000 simulated

series, the GA estimated the true number of change-

points (m5 3) correctly in 975 of the series. In the re-

maining 25 cases, 10 of the series were estimated to have

two changepoints, 12 series to have four changepoints,

two series to have one changepoint, and one series to be

changepoint free.

To evaluate the detection performance under dif-

ferent shift sizes, three changepoints are placed at the

times t1 5 900, t2 5 1825 (31 December, year 5), and

FIG. 1. Periodic autoregressive coefficients f(n) and variances s2(n) of the target minus reference series.
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t3 5 2700, shifting the mean upward by D8F, then

downward by 2D8F, and then upward by D8F, re-

spectively; the last shift returns the series to its starting

mean level. The shift size D (in 8F) is varied in

f0:5, 1:0, 1:5, 2:0g. All other simulation parameters, in-

cluding metadata, remain as in the above paragraph.

Table 1 shows, for all D considered, the percentages of

exact changepoint hits (estimating the changepoint on

its exact day of occurrence), the number of hits that flag

the changepoint within 615 days of its true occurrence

(say a monthly hit), and the estimated total number of

changepoints. Since t1 is a metadata time, it has the highest

exact detection percentage under most Ds. Because the

mean shift size at the second changepoint is twice as large as

the other two mean shifts, the detection rates of t2 within

615 days are higher than those of t1 and t3. Obviously,

performance worsens as the shift size D become smaller.

c. Two changepoints in different seasons

Next, 1000 Gaussian series with two changepoints at

the times t1 5 821 (1 April, year 3) and t2 5 2758

(22 July, year 8) were simulated. The variability of the

series at the April changepoint is about 3.878F and the

variability at the July changepoint is about 1.768F. Both
changepoints are posited to be undocumented and shift

the series mean 28F upward. Figure 3 displays a simu-

lated series and an associated histogram of detection

percentages. The detection rate (exact hit) of the April

changepoint is indeed 13% lower than the detection rate

of the July changepoint, confirming that changepoints

occurring in high variability seasons (winter or spring)

are more difficult to detect than changepoints occurring

in low variability seasons (summer). The true number of

changepoints (m 5 2) was correctly estimated in 951 of

the 1000 runs; 14 series were estimated to have one

changepoint, and 35 series to have three changepoints.

d. Estimation of shift sizes

To investigate the estimation accuracy of mean shift

sizes, 1000 Gaussian series with one changepoint in the

middle of the record, t1 5 1825,were generated,withmean

shift sizes (in 8F) varied in f60:5, 61:0, 61:5, 62:0g. For
simplicity, no trend or seasonality is considered. In this

setting, the errors were assumed to follow a first-order

autoregressive [AR(1)]modelwithf5 0:7 andwhite noise

variance 12f2 5 0:51. These settings induce a unit vari-

ance in all simulated temperatures. Table 2 displays the

means of the estimated shift sizes, aggregated only from the

runs where a single changepoint was detected. As long as

the signal-to-noise ratio (mean shift size to standard de-

viation, which is the mean shift size in this case) is not too

small, our method accurately estimates the mean shift size.

e. Daily versus monthly changepoint detection

Changepoints located close to each other can be hard to

detect, in which case the increased number of observations

FIG. 2. A simulated daily temperature series with three changepoints. Vertical dashed lines demarcate the three

mean shift at times 900, 1800, and 2700. Crosses on the axes markmetadata times. The bottom plot shows detection

percentages.

TABLE 1. (top) Detection percentages for the three changepoint

simulated example. (bottom) Estimated number of changepoints,

out of 1000 independent realizations for each shift size D.

Within 615 days On the exact day

Shift size D (8F) t1 t2 t3 t1 t2 t3

2.0 57.4 96.1 43.0 46.4 34.8 15.8

1.5 35.0 89.2 22.0 27.3 22.6 8.8

1.0 9.4 74.6 4.5 8.3 10.9 1.0

0.5 3.3 36.0 1.2 3.1 3.0 0.8

Shift size D (8F) 0 1 2 3 4

2.0 0 77 13 888 22

1.5 10 378 87 521 4

1.0 20 771 103 105 1

0.5 129 801 67 3 0
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in daily data can be helpful. Here, for each of the 1000

Gaussian series [no trend, no seasonality, AR(1) with

f5 0:7 and a series variance of unity], 10 years of daily

datawere generated,with three nonmonotonicmean shifts

placed at days 1735, 1825, and 1915 that shift the series

mean by128,248, and128F, respectively. Each series was
analyzed twice, once using our daily homogenization

techniques, and once using a monthly version of BMDL

after monthly averaging the daily data. No metadata are

assumed to be available here. For the monthly averaged

data, the true changepoints occur at months 57, 60, and 63.

Figure 4 shows detection percentages at exact times.

The extra precision in the daily record substantially

improved detection accuracy over monthly data, while

not increasing false detections. The analysis withmonthly

series typically misses all three changepoints. For a fairer

comparison between daily andmonthly analyses, an exact

hit with daily data is better viewed as a hit if a changepoint

is flagged 615 days from the true mean shift, which is a

‘‘monthly window.’’ With this definition of a hit time, the

daily detection rates of the three Fig. 4 changepoints in-

crease to 53:6%, 80:4%, and 52:0%, respectively. Before

leaving this issue, we comment that some series have er-

roneous observations (outliers) that do not appear bla-

tantly wrong at a first glance. Often, MDL adjacent

routines will flag a pair of adjacent times, indicating that

such a point could be an outlier, perhaps in need of fur-

ther examination.

f. GA parameters and runtimes

Finally, runtimes (minutes) are explored for a 10-yr

daily series with three changepoints at days 900, 1800,

and 2700 (Fig. 2 graphs an example of such a series) for

different GA parameter settings. The optimum change-

point configuration was determined by running a genetic

algorithm many times and recording the absolute best

BMDL. Then, a GA was run under various different

parameter settings until it found this optimal change-

point configuration, and then terminated. For each dif-

ferent parameter configuration, a GA was run 25 times

and average runtimes were computed.

The top portion of Table 3 fixes the mutation proba-

bility as 0.0001. GA convergence slows as the population

size (the number of islands times the island size)

grows. With the same population size of 100, a GA

with two islands slightly outperforms that with a single

island. The bottom three rows in Table 3 fix the pa-

rameters at their best values in top nine rows of this

table: l5 1, two islands, and an island size of 50. The

mutation probability of 0.0001 was found as optimal

among the ones explored.

6. Analysis of daily data from South Haven,
Michigan

Figure 5 (left panels) displays average daily temper-

atures at South Haven, Michigan, from 1 January 1953

FIG. 3. A simulated daily temperature series with two changepoints. Vertical dashed lines demarcate the two

mean shifts at times 821 and 2757. Crosses on the axes mark the metadata times. The bottom plot shows detection

percentages.

TABLE 2. Mean shift size estimation.

Shift size D (8F)
A single changepoint

detected (%)

Mean of estimated

shifts

0.5 9.4 0.765

20.5 11.3 20.797

1.0 95.6 1.029

21.0 95.8 21.028

1.5 99.9 1.508

21.5 100.0 21.504

2.0 100.0 1.997

22.0 100.0 21.993
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to 31 December 1998 (46 yr). The bottom plot shows

seasonally adjusted temperature anomalies, where a

daily sample mean has been subtracted. Leap year data

were omitted; hence, there are 3653 465 16790 data

points. The periodic mean cycle of the daily tempera-

tures in Fig. 5 is evident; however, it is difficult to visually

see any changepoints in these plots. To illuminate mean

shifts and to lessen trends and seasonal cycles, reference

series are often used (Menne and Williams 2005, 2009).

For the South Haven series, reference series are avail-

able from the nearby Michigan stations at Shelby,

Benton Harbor, and Pellston Regional Airport. We use

Benton Harbor as our reference series since it is located

on the eastern shore of Lake Michigan, like South

Haven. The right panels in Fig. 5 show average daily

and daily adjusted temperature anomalies at Benton

Harbor. Even though subtraction of a reference series

often lessens trends and seasonal mean cycles, these

components are still retained in ourmodel. Indeed, as Liu

et al. (2016) shows, target minus reference subtractions

often do not completely remove the seasonal cycle.

The records at South Haven (the target series) and

Benton Harbor are mostly complete, with only a few

sporadic missing data points (less than 1.3% of the re-

cord). For simplicity, missing data were infilled in our four

series (maximums and minimums at the target and ref-

erence stations). To do this, a first-order vector autore-

gressive model was fitted to the four series in tandem.

FIG. 4. (top) Daily vs (bottom) monthly detection, aggregated from 1000 independent

datasets.

TABLE 3. GA runtimes.

l

Mutation

prob.

Number of

islands

Island

size

Average

runtime

1 0.0001 1 100 28.73

5 0.0001 1 100 38.39

10 0.0001 1 100 41.25

1 0.0001 2 50 27.02

5 0.0001 2 50 37.06

10 0.0001 2 50 36.37

1 0.0001 4 50 47.94

5 0.0001 4 50 44.48

10 0.0001 4 50 73.04

l

Mutation

prob.

Number of

islands

Island

size

Average

runtime

1 0.00001 2 50 33.60

1 0.0001 2 50 27.86

1 0.001 2 50 43.10
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Missing data were infilled with best linear predictions. For

example, if the maximum temperature of the reference

series at time twas missing, this point was estimated by its

best linear predictor from all nonmissing observations of

the other three series at times t, t 2 1, and t 1 1. Runs of

missing values were infilled one at a time.

Figure 6 plots the difference of daily average tem-

peratures (daily average temperatures are the average

of daily maximum andminimum temperatures) at South

Haven and Benton Harbor. The graph appears to have

some mean shifts, possibly attributable to either station.

The metadata records for South Haven and Benton

Harbor list three changes from 1953 to 1998. According

to South Haven’s metadata, traditional liquid-in-glass

maximum–minimum thermometers were replaced by

electronic maximum–minimum temperature sensors on

22 August 1990. The station at Benton Harbor was re-

located on 8 December 1993 and 19 June 1996. The

8 December 1993 relocation moved the station 600 ft

south. Besides latitude and longitude details, the met-

adata do not provide a description of the second re-

location. These three times were declared metadata

times in the analysis. An island GA algorithm with two

islands, a population size of 75 on each island, and 2000

FIG. 5. (left) South Haven daily average temperatures (top) before and (bottom) after subtracting a daily sample

mean. (right) Analogous plots for the Benton Harbor station.

FIG. 6. The South Haven minus the Benton Harbor series, showing the changepoint

structure (top) without and (bottom)with a linear trend. The estimated changepoint structure

is superimposed on the graph and reveals 15mean shifts without the linear trend and 13 mean

shifts with a linear trend.
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generation iterations converged to a changepoint con-

figuration with 13 changepoints (the bottom panel of

Fig. 6). The runtime was about 19h on a Dell optiPlex

9020 computer. Among the 13 flagged changepoints, only

the 26 December 1993 changepoint is close to a metadata

time (8 December 1993). This metadata time is the first

station relocation of the Benton Harbor station. Neither

the equipment change at South Haven nor the second

relocation at Benton Harbor were judged to induce mean

shifts. At the second relocation (19 June 1996), it is not

clear if the station actually moved or if the latitude and

longitude were updated to a higher precision.

The estimated PAR(1) autoregressive coefficients and

their periodic variances are those displayed in Fig. 1. The

estimated linear trend parameter is 20:44408F century21

and has a standard error of 1:358Fcentury21 (the stan-

dard error was computed with a time series regression

model and allows for autocorrelation). Since the linear

trend is insignificant at the 95% significance level, and

trend aspects are crucial in changepoint analyses

(Gallagher et al. 2012), the target minus reference se-

ries was reanalyzed without a trend component. The

resulting changepoint structure has 15 changepoints

and is displayed in the top panel of Fig. 6. Table 4

displays the estimated changepoints, their occurrence

times, and their corresponding mean shifts. Ten of the

shifts move the series to colder regimes and five to

warmer regimes.

To complement the daily analysis, annual and monthly

target minus reference temperature series (Figs. 7 and 8)

were also analyzed. The model in (1) with period 12 was

fitted to the monthly averaged data. A GA was used to

minimize the BMDL in (4) and revealed two change-

points at August 1980 and December 1987. For the an-

nually averaged series, a multiple changepoint model with

time-homogeneous AR(1) errors was fitted to the data. A

GA analysis revealed six changepoints at the times

1955, 1956, 1992, 1994, 1995, and 1997. Figure 8 shows the

changepoints of the annual target minus reference series.

While 13 changepoints were found in the daily series, only

five were found in the annual analysis, demonstrating the

extra precision gained with daily series. In fact, dips in the

series circa 1956 and 1967 are flagged as changepoints in

the daily series, but not in themonthly series (even though

the monthly graph is ‘‘suspect’’ at these two times).

7. Comments

This paper modified the BMDL techniques of Li et al.

(2016) to accommodate daily temperature series. A

BMDL objective function is minimized to estimate the

best changepoint configuration. The BMDLhere accounts

for trends, metadata, seasonal means, autocorrelation, and

seasonal variabilities. An island version of the GA was

TABLE 4. Estimated changepoint times and corresponding mean

shift sizes.

Changepoint Time Mean shift Nearest metadata

666 27 Oct 1954 21.31108F No metadata

before 1990673 3 Nov 1954 21.34788F
868 17 May 1955 23.56768F
955 12 Aug 1955 20.62348F
1022 18 Oct 1955 0.61088F
2807 8 Sep 1960 20.18678F
3750 9 Apr 1963 1.31588F
4985 27 Aug 1966 22.03808F
5098 18 Dec 1966 0.60408F
7090 3 Jun 1972 1.16078F
10315 4 Apr 1981 20.48658F
12632 9 Aug 1987 21.91198F 22 Aug 1990

14942 7 Dec 1993 0.21618F 8 Dec 1993

15340 9 Jan 1995 21.57688F 8 Dec 1993

16104 12 Feb 1997 22.78438F 19 Jun 1996

FIG. 7.Monthly SouthHavenminusBentonHarbor serieswithoptimal changepoint configuration

superimposed.
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implemented as a numerical optimization tool. Identifying

changepoints in daily data is challenging due to long series

lengths, large seasonal cycles, and the large number of

model parameters.

The mean shift magnitudes in our model are non-

seasonal; the mean shift changes temperatures on all days

by the same amount. Should one expect a seasonal mean

shift structure (say with winter shifts being larger than

summer shifts), this could be allowed in the modeling

procedure, although it would take work to accommodate

such a structure. Future work might combine our tech-

niques with the quantile matching methods of Trewin

(2013) to investigate series changes that are notmean shifts.

The MDL methods here and elsewhere (Li and Lund

2012), which do not require data samples before and

after a changepoint time to be large, may flag two

changepoints at times close to each other. Often, this is

suggestive of an outlying observation in need of confir-

mation or a run of outliers. While the time scale of ho-

mogenization is ultimately up to the homogenizer, MDL

techniques also appear helpful in assessing data quality.

While our study examined temperature series, our

methods can be applied to other climatic series with non-

Gaussian dynamics. For example, Poisson-based likeli-

hoods could be used for count series such as the monthly

number of snow or thunderstorm days. While this re-

search only considered univariate series, the methods

could be modified to analyze multiple daily series.

Further improvements in computational speed of the

algorithm are possible. The current GA runtimes make

application of the methods to a large network of L

temperature series infeasible, where all

�
L
2

�
pairwise

differences series need to be examined for changepoints.

This said, multiple changepoint computing is an active

area of current statistics research. Improvements in

computer speed, GA parameter tuning, and methods

such as wild binary segmentation (Fryzlewicz 2014) may

render this drawback moot in the near future. Markov

chain Monte Carlo (MCMC) methods could also be

used to help identify the optimal model; these tech-

niques are developed in Li et al. (2016). Prescreening

methods (Chan et al. 2014; Yau and Zhao 2016) that

seed the genetic algorithmwith initial chromosomes that

are likely to be very good can further accelerate GA

computational speed. For long series, it may be possible

to analyze the series in smaller blocks.

Finally, it would be worthwhile to compare the de-

tection methods here to some of the computer pack-

ages used in today’s temperature homogenization

problems; see Venema et al. (2012). Such a compari-

son, while beyond our scope here, should put all

methods on the same footing. For example, with daily

series that have high positive autocorrelation, one

should penalize for false changepoint declarations,

which would happen frequently if the method does not

allow for autocorrelation.
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